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Abstract

We describe a method to determine the mechanical and thermodynamic properties of the interface between a polyethylene crystal and melt by

united-atom Monte Carlo simulations. In particular, the {201} fold surface is studied in the temperature range 380–450 K. The interface properties

are defined by using the concept of a sharp Gibbs dividing surface, which in turn is used to define the interface internal energy and the interface

stresses. We find that the internal energy of the interface is of the order 0.3–0.35 J/m2. The interface stresses are anisotropic for the {201} crystal

surface with values of approximately K0.27 and K0.4 J/m2 for the xx- and yy-components, respectively. By way of the Herring equation, the

surface tension of the fold surface is independent of shear strains in the interface. The temperature and strain derivatives of the interface properties

are also measured and discussed in detail. The influence of the interface internal energy and of phase change contributions on the macroscopic heat

capacity of the semi-crystalline material is examined.

q 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Crystallizable polymers are typically not fully crystalline in

the solid state. This effect is particularly pronounced when the

polymers are considerably longer than the lamella thickness,

which leads to chains exiting and re-entering the same or

another lamella. Hence, these non-crystalline portions of the

chains can never crystallize, even below the melting

temperature, due to their connectivity to one or several

crystals. A careful characterization of the crystal–melt inter-

face is thus of importance not only for the crystallization

process, but also for the properties of the final semi-crystalline

material.

Experimentally, the properties of the interface are difficult

to measure. When it comes to thermodynamics or mechanical

properties, one often has to rely on indirect measurements. For

example, the planar stresses in the lamellar fold surface distort

the crystal lattice spacings, the distortion being more

pronounced for thinner lamellae [1]. By using experimental

data on the lattice spacings as a function of lamella thickness in

conjunction with data on the mechanical stiffness of the crystal,

Cammarata et al. [1–3] were able to draw conclusions about the
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magnitude of the interface stresses. They found the stresses to

be of the order of K0.1 to K0.3 J/m2 for a {001} surface,

depending on the experimental values used. The fact that the

interface is actually under pressure can be attributed to the way

the polymer chains exit the crystal. First, some of them re-enter

the same crystal and the (tight) bending of the chain tries to

push both anchor points apart; second, the chains have a higher

mobility just above the crystal surface but are constrained by

having one end fixed in the crystal. Further indirect

measurements of thermodynamic properties include predic-

tions on the surface tension of the fold surface, which in turn

enters in theoretical models for experimentally measurable

crystallization rates [4,5]. One finds a value of approximately

C0.1 J/m2 for the surface tension of polyethylene, i.e., the

same order of magnitude as the interface stresses, but with

opposite sign. According to Cammarata and Sieradzki [3], for

most solids the interface stresses are generally of the same

order of magnitude as the surface tension, and can be negative

or positive. Interface stresses are believed to be important for

the effects of lamellar twisting [6]. In order to result in twisting,

the stresses on the opposite fold surfaces of the lamella need to

be different. It is argued that such asymmetry may indeed occur

if the chains are tilted with respect to the fold surface normal

[7,8], such as is the case for a {201} polyethylene surface.

Other effects of interface stresses are discussed by Rault [9].

The interlamellar phase has been studied by Monte Carlo

molecular simulations previously [10–13]. The structure of the
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loop surface is determined by entropically driven disordering

of the chains away from the surface, and enthalpically favored

packing of short loops close to the surface. Further studies

showed that the {201} crystal surface is energetically favored

over other surfaces, in agreement with experimental obser-

vations [14]. Structural and in particular the thermodynamic

and mechanical properties of the metastable interlamellar

phase as a whole have been studied extensively for freely

rotating chains [15] and for polyethylene [16]. In this paper, we

concentrate on the properties of the interface alone. We choose

to coarse-grain the spatially gradual transition between the

crystal and the melt phase into a sharp interface model, namely,

using the concept of the Gibbs dividing surface. This definition,

as proposed by Gibbs, provides a solid foundation for a detailed

discussion of the interface properties. By doing so, one is

rewarded with the necessary ingredients, e.g. energy per unit

area of the interface and the interface stresses, for a three

component model (two bulk phases and interface) on a coarser

modeling scale.

Here, we estimate thermodynamic properties and interface

stresses based on a united-atom Monte Carlo simulation. As

suggested by Fisher, Eby and Cammarata [3], it is important to

consider other than tight folds, and to study crystal surfaces

other than {001}. We use a Monte Carlo scheme that does not

impose constraints on the topology and fold structure of the

interface, and we study the commonly observed {201} surface

of polyethylene crystals. The manuscript is organized as

follows. The simulation technique and the method of interface

thermodynamics using the Gibbs dividing surface are

described in Section 2, before the results of the simulation

are discussed in detail. We conclude with Summary and

Discussion.
2. Method

2.1. Simulation technique
2.1.1. Force field

We use the united atom model of Paul et al. [17] for

polyethylene, slightly modified as described in our previous

work [16], including the torsion angle terms. A Lennard-Jones

potential is used to compute the non-bonded CH2 interactions

between all united atom pairs on different chain segments and

those separated by four or more bonds in the same chain

segment

ELJ;ij Z 43LJ

sLJ

dij

� �12

K
sLJ

dij

� �6� �
;

with dij Z jriKrjj;

(1)

with 3LJZ390.95 J/mol and sLJZ0.4009 nm; ri and rj
represent the Cartesian coordinates of sites i and j. The

Lennard-Jones interactions are truncated at a cut-off distance

rcZ2.5sLJ. Long range corrections for Lennard-Jones inter-

actions and for virial calculations are included, as discussed by

In ’t Veld and Rutledge [15]. In addition to these non-bonded
interactions, there are three types of bonded interactions

included. The bond stretching potential is harmonic in bond

length

El;i Z
1

2
klðliKl0Þ

2; (2)

where li is the length of bond i; the bond stretching constants

are klZ376.1 MJ/mol/nm2 and l0Z0.1530 nm. The bond

bending potential is harmonic in the cosine of the bond angle

Eq;i Z
1

2
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where qi is the complement of the bond angle constructed by

bonds i and iK1; the angle bending constants are kqZ502.1 kJ/

mol and q0Z68.08. The bond torsion potential, after rearrange-

ment using trigonometric identities, has the form

Ef;i Z
X3

nZ0

kn cosn fi; (4)

where fi is the bond torsion angle constructed by bond pairs {i,

iK1} and {iK1, iK2}, namely the angle between the vectors

Dri!DriK1 and DriK1!DriK2 with DrihriKriK1. The torsion

constants are kn2{6.498, K16.99, 3.626, 27.11} kJ/mol.

The total torsion energy is the sum over all available torsion

angles.

2.1.2. Virial calculation of stress

For each of the force field contributions described above,

there is a corresponding contribution to the virial. The total

instantaneous stress tensor s is then expressed in terms of the

virial contributions W as

sZK
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(5)

which is the summation over all contributions due to Lennard-

Jones interactions, bond lengths, bond angles, and bond

torsions. The last contribution is the ideal gas contribution,

WidealZNsiteskBT. For the explicit expressions of the other

virial contributions, the reader is referred to In ’t Veld et al.

[15,16].

2.1.3. Simulation setup and sampling

We use a simulation box consisting of a rigid crystal phase

and a mobile interlamellar phase as a model for semi-crystalline

polyethylene. The interlamellar phase includes both interface

and amorphous phase components. The goal of studying the

interface between crystal and melt also at temperatures different

than the melting temperature requires that one impose certain

constraints on the system which hinder it from melting or

crystallizing. In order to prevent crystallization at low

temperatures, the volume is held constant, while in order to

prevent melting at high temperatures the crystal sites are

immobile. Rigorously speaking, the interlamellar phase is
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metastable under these conditions [18]. In this study we

calculate the energy density and the stress tensor components

as a function of position. As will become clear below, it is

important that both the melt and the crystal phases are at the

same stress (e.g. atmospheric) far away from the interface. Since

the force field we use has been optimized to describe the melt

state, the stresses in the crystal when using experimental lattice

parameters are not atmospheric. Therefore, we adjust the lattice

parameters in order to use the same force field throughout the

entire simulation cell and achieve atmospheric conditions in

both the crystal and the melt. For this purpose, we required

that the temperature-adjusted configurational stress plus the

temperature-dependent ideal gas contribution equal atmos-

pheric pressure for each temperature. The lattice parameters

that lead to atmospheric conditions in the crystal for this

forcefield are aðTÞZ ð0:774053C0:0000471!ðTK400ÞÞ nm,

bðTÞ Z ð0:445817 C 0:0000261 ! ðTK400ÞÞ nm, and

cðTÞZ ð0:252748C0:0000014!ðTK400ÞÞ nm, where T is

the temperature in units of K. As confirmed a posteriori,

these relations are sufficient to ensure atmospheric conditions

within 6 MPa in the crystal (which is negligible with respect to

the local pressures in the interface) over the entire temperature

range considered here. More realistic thermal expansion

behavior could be determined a priori through a separate

crystal phase simulation that samples the full anharmonicity of

the vibrational modes in the crystal lattice with interaction

forces suitable for the crystalline phase, but this was not done

here. Using the lattice parameters given above, the ortho-

rhombic unit cell attains hexagonal symmetry in the ab-plane,

as is typical for united atom models of polyethylene. We

choose to study the {201} crystal surface, which is found

experimentally to be the most common fold surface for

polyethylene [14]. A schematic diagram of the simulation box

is shown in Fig. 1. The size of the simulation cell corresponds

to 3a/cos(atilt)x2.77 nm with tilt angle atiltZarctan(2c/a) and
Fig. 1. Schematic diagram of the simulation box, showing the two crystalline

lamellae and the interlamellar phase in between, which consists of loops (thin

solid lines), bridge chains (thick solid lines), and tails (dashed lines). The

polyethylene unit cell (grey box) with coordinate axes (a,b,c) is tilted by an

angle atilt with respect to the surface normal and the coordinate system (x,y,z).
6bx2.67 nm in the x- and y-directions, respectively. In the

z-direction normal to the crystal surface, we use a crystal of

2.62 nm thickness on both ends of the simulation cell and

approximately 7.22 nm of mobile interlamellar phase. The

pressure in the melt phase far away from the interface also is

adjusted to have atmospheric conditions by changing the

z-extension of the interlamellar phase. The values for the

densities of the crystal and melt used in the simulations are

reported in Fig. 2. We point out that the chosen intercrystalline

phase dimension is realistic for a semi-crystalline material

formed at large undercooling [19]. The mobile interlamellar

phase consists of NsitesZ1944 (at TZ380 K) to NsitesZ1960 (at

TZ450 K) united atoms, which are grouped into 18 tail

molecules and 27 loop and bridge molecules. Following the

simplified chain length statistics described elsewhere [18],

crystal stems of 100 united atoms (corresponding to a

separation of approximately 10.5 nm between the two surfaces

of a {201} crystal) in conjunction with the interlamellar

material simulated here would correspond to a polyethylene of

molecular weight 9630 g/mol and 60% crystallinity. Phase

space is sampled in Monte Carlo fashion by topology altering

(end-reptation and end-bridging) and displacement (end-

rotation, rebridging, and single-site displacement) moves, as

explained in our previous paper [15]. In addition, we facilitate a

more efficient sampling of phase space at lower temperatures

by applying parallel tempering. Our parallel tempering scheme

uses a temperature profile as prescribed by Kofke [20] to

ensure equal swapping probability between neighboring

temperatures (an acceptance of 35% is observed). The

temperature profile is given by T2{380.6, 391.4, 402.4,

413.8, 425.6, 437.6, 450} K. We note that the simulation boxes

participating in the same parallel tempering simulation all have

the same volume, although they have different temperatures.

As a consequence, in a single parallel tempering simulation,

atmospheric conditions are satisfied in the bulk phases far away

from the crystal surface only for one specific temperature.

Hence, in order to get interface properties with respect to bulk

phases at atmospheric conditions at different temperatures, we

perform many parallel-tempering simulations.
Fig. 2. Crystal (&), melt (,), and volume averaged (6) mass densities used in

the simulations as a function of temperature.



Fig. 3. Profile of mass density. Dashed line shows the profile after the sharp-

interface approximation, with the Gibbs dividing surface located at zdivZ0.
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2.1.4. Initial configuration

A {201}-oriented crystal of 36 chains with 120 united atom

CH2 sites in an orthorhombic box serves as the starting point for

the initial structure. We immobilize the first and last 25 sites of

each chain, after which 27 chains are selected at random to

serve as bridge molecules. The remaining nine chains are split

in half to serve as tails, after which sites are then deleted from

the mobile ends to satisfy approximately the density require-

ment for the interlamellar phase for atmospheric conditions.

The density of the interlamellar phase then is fine-tuned by

affinely deforming the mobile region. Once created, randomi-

zation of this configuration takes place at TZ10,000 K for 1000

cycles to ensure a fully amorphous interlamellar phase. Here, a

cycle is defined as Nsites Monte Carlo moves, with Nsites being

the total number of sites in the simulation cell, including the

immobile crystal sites. These randomized configurations are

quenched to TZ5000 K for 10,000 cycles, then to TZ2000 K

for 10,000 cycles, then to TZ1000 K for 10,000 cycles, and

finally to the desired temperatures {380.6, 391.4, 402.4, 413.8,

425.6, 437.6, 450} K, and equilibrated for 25,000 cycles before

any measurements are taken. Decay studies of the energy auto-

correlation function confirm equilibration in less than 25,000

cycles.

Deformation is treated according to respective regions.

United atom sites in crystalline or immobile chain segments are

considered intra-molecularly rigid and thus, when deformed,

are displaced with respect to a common reference or anchor

point. This anchor point is defined as the intersection of the

segment’s molecular axis with the nearest simulation box face

in the z-direction (at zZG(1/2)Lz). Like the interlamellar

phase or mobile united atom sites, anchor points are deformed

in regular affine fashion, regardless of the deformation

direction. This particular approach assures treatment of both

top and bottom crystal phase as one continuous phase. Once

deformed, a configuration is equilibrated for 25,000 cycles.

2.1.5. Profiles of energy density and stresses

Measuring the energy density and the components of the

stress tensor as a function of the z-direction (normal to the

crystal surface) is an essential ingredient for the calculation of

the interface properties. These profiles are measured with a

resolution of DzZ0.035 nm. In order to calculate the local

energy and stress components in each bin, one considers all

types of interactions (Lennard-Jones, bond length, bending

angle, torsion) and apportions the corresponding energy and

stress contribution equally to each of the particles involved. For

clarification, we illustrate the procedure on the example of the

torsion interaction, which involves the relative positions of four

particles. Since the positions of all four particles are equally

important for the value of the torsion energy, we assign a

quarter of the energy and a quarter of the stress components to

each of the four particles. In doing so, we make sure that all

contributions are counted exactly once. In the course of the

Monte Carlo simulation, we calculate for each bin the average

energy and the average stresses per particle. This is then

multiplied by the local number density, in order to obtain the

final energy density and stress component profiles. The long
range correction for the Lennard-Jones interaction has been

accounted for in the profiles of both the energy and the stresses.
2.2. Interface thermodynamics

The procedure to obtain the thermodynamic and mechanical

properties of the interface is best described by considering a

specific example, here the polyethylene crystal–melt interface.

A more detailed and complete description can be found

elsewhere [21–23]. The mass density profile versus surface

normal direction, z, shown in Fig. 3 is obtained by considering

each united atom as a sphere of Lennard-Jones diameter sLJ.

For each united atom, its mass is split up and distributed over

all bins in the z-direction which are closer than sLJ/2 to the

united atom center position, according to the sphere volume

falling into each bin. The mass density transitions gradually

between the crystal density (left side in Fig. 3) to the melt

density (right side in Fig. 3). In coarse-graining, we

approximate this gradual transition as a step function, where

everything to the left of the step is identical to the crystal far

away from the interface, and everything to the right is identical

to the melt far away from the interface. The sharp interface is

known as the Gibbs dividing surface [21,22]. Here we adopt the

common definition that the Gibbs dividing surface is chosen

such that the integral of the true mass density profile equals the

integral of the step function, which amounts to the conservation

of mass. Hence, the interface mass density (kg/m2)

rintd

ðN
KN

ðrðzÞKrstepðzjzdivÞÞdzZ 0 (6)

vanishes for this particular position of the dividing surface, zdiv.

Here z describes the spatial variable perpendicular to the

interface. The fact that the interface is massless has important

ramifications for the interface thermodynamics [22], e.g. the

chemical potential of the interface vanishes. In order to define

the interface energy, one next replaces the true energy profile

as shown in Fig. 4 (open symbols) by a step function, where the

step is located at the position determined previously from the

mass density profile, zdiv. In general, the energy of the total

system based on the step profile and on the true profile do not



Fig. 4. Profile of energy density: simulated (,), and after subtracting the bulk

contributions on the crystal side (z!0) and the melt side (zO0) (&).
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coincide, the difference then being defined as the interface

(excess) energy, eint, in order to conserve energy

eintd

ðN
KN

ðeðzÞKestepðzjzdivÞÞdzs0: (7)

In Fig. 4, the integral of the curve with the solid symbols

amounts to the internal energy of the interface. With the two

definitions (6) and (7) one ensures that the total mass and

internal energy based on the step profile representation,

including the interface (excess) contributions, equal the values

obtained from the true profile representation.

The interface stresses are defined as follows. The stress

tensor components can be determined at various positions

along the direction of the surface normal (see Fig. 5), sab(z).

The interface stresses, pab, are then defined by [21]

pabd

ðN
KN

ðsabðzÞKs
step
ab ðzjzdivÞÞdzs0 ða; bZ x; yÞ; (8)

where s
step
ab ðzjzdivÞ defines the step function with step located at

zdiv and where the values at either side of the step correspond to

the bulk stress value far away from the interface. Eq. (8) clearly

shows that only the contributions due to the presence of the

interface are of interest, and the bulk contributions are

subtracted by using the Gibbs dividing surface. This is also

beneficial with respect to assuming fixed, immobile crystal
Fig. 5. Profile of stress tensor: sxx(z) (&), syy(z) (,), and sxy(z) (6).
atoms. The response of the crystal to a change in temperature is

captured only approximately by adjusting the crystal structure

to the temperatures of interest. However, small errors in the

bulk crystal stresses due to e.g. a small imposed strain do not

contribute to the interface stresses according to (8). Similarily,

small errors in the bulk energy densities are unimportant for the

interface energy as defined in Eq. (7). In quiescent conditions

and for a planar interface, both phases are at atmospheric

conditions far away from the interface, by construction.

It is important to note that the interface stresses are different

from the surface tension g, i.e. from the Helmholtz free energy

per unit area, if at least one of the two joining phases is solid

[24]. Both quantities are connected in a non-trivial way through

the Herring equation [3,25]

pab Zgdab C
vg

veab
; (9)

where dab denotes the identity matrix. For interfaces in which

at least one of the two phases is not fluid, the surface tension

depends on the strain in the interface, eab (a,bZx,y), in which

case the second term in Eq. (9) becomes important. The

experimental values reported in Section 1 show that the strain

dependence of the surface tension can be so significant that the

interface stresses and the scalar surface tension are of opposite

sign. While the surface tension measures the reversible work

per unit area involved in forming a surface, which exposes new

molecules, the interface stresses capture the mechanical

response upon deformation of the interface [23].

3. Results and discussion

3.1. Position of the Gibbs dividing surface

The first ingredient in the measurement of the interface

internal energy and of the interface stresses is the position of

the Gibbs dividing surface. In Fig. 6, the location of the

dividing surface determined from the Monte Carlo simulations

is reported for a range of temperatures. Because the mass

density profiles vary smoothly between the discrete points in
Fig. 6. Position of the Gibbs dividing surface, plotted versus temperature at

atmospheric bulk stresses in the adjoining crystal and melt phases. The error

bars (as also for Figs. 8 and 11) are calculated by splitting the entire Monte

Carlo simulation in 10 blocks. The ten statistically independent block averages

are then used to determine the error associated with the total average.



Fig. 8. Interface internal energy, plotted versus temperature at atmospheric bulk

stresses in the adjoining crystal and melt phases.
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the z-direction (separated by the resolution DzZ0.035 nm) we

may use interpolation to determine the position of the Gibbs

dividing surface more accurately. The position of this surface is

measured with respect to the real crystal surface, which is

defined midway between the top layer of united atoms in the

crystal and the first layer of mobile atoms. For all values

reported in Fig. 6, the bulk phases are at atmospheric

conditions far away from the interface at the corresponding

temperature. Thus, the geometry of the simulation cell varies

from temperature to temperature. The results show that the

Gibbs dividing surface moves closer to the real crystal surface

at the higher temperatures. The thickness of the interface is

approximately equal to 2zdiv, from which we can infer that this

thickness also decreases for the higher temperatures, in accord

with previous results [15,16]. At higher temperatures, melt

entropy becomes more important, and the energetically

dominated persistence along the chain backbone weakens,

resulting in a sharper crystal–melt transition.

Let us now consider the temperature derivative of the

position of the dividing surface. The pressure in the bulk phases

obviously affects the position of the dividing surface, zdiv. In

more general terms, this means that the description of interface

properties must take into account not only the temperature T and

the strain in the interface plane eab (a,b2{x,y}), but also the

pressures in the bulk of the crystal and the melt need to be

considered. This has ramifications for the temperature deriva-

tive of the position of the dividing surface. While the slope in

Fig. 6 is a derivative at constant bulk pressures,

ðvzdiv=vTÞjeab ;pc;pm
, we wish to calculate the temperature

derivative also when keeping the total volume V of the system

constant, ðvzdiv=vTÞjeab ;V . The values for the latter derivative are

reported in Fig. 7. They (and also the data shown in Figs. 9 and

12) are obtained by fitting a linear function through measure-

ments at three successive temperatures of a single parallel

tempering simulation, where for the middle temperature the

geometry of the simulation cell results in atmospheric

conditions in both crystal and melt far away from the interface.

While the temperature derivative at constant bulk stresses as

determined from Fig. 6 goes from approximately K9!
Fig. 7. Temperature dependence of the position of the Gibbs dividing surface at

constant interface strain eab and constant system volume V. Each error bar is

calculated by propagating the errors from the three data points at successive

temperatures to the slope of the linear fit function.
10K4 nm/K below TZ400 K to zero within error bars above

TZ430 K, the corresponding values for the constant volume

temperature derivatives show the same trend but are larger by a

factor of approximately 5. Keeping the volume constant during a

temperature increase results in an increased pressure in the melt

phase, which in turn further compresses the interface. Because

this effect is absent when maintaining bulk pressures at

atmospheric conditions, the slope estimated on the basis of

Fig. 6 is smaller than the values shown in Fig. 7.
3.2. Internal energy of the interface

The internal energy of the interface is determined from

energy density profiles as measured in the Monte Carlo

simulations. We then use the procedure described by Eq. (7)

with the values for the position of the Gibbs dividing surface

zdiv reported in Section 3.1. The corresponding results are

shown in Fig. 8. We see that the interface internal energy

steadily increases with increasing temperature up to the

melting temperature (Tmx410 K), and remains approximately

constant above. The energy values in Fig. 8 are significantly

higher than the values calculated previously (0.07 J/m2) [13],

where torsional energy was neglected and the experimental

lattice parameters (instead of optimized) were used. In contrast

to experimental values for the Helmholtz free energy per unit

area (i.e. surface tension) of approximately 0.1 J/m2 for the fold

surface [4,5], the interface internal energies reported here do

not include entropic contributions. From a comparison of the

experimental data with our simulation results one can estimate

that the entropic contribution is given by Tsintx0.2 J/m2.

The temperature derivative of a thermodynamic property

depends on the variables that are held constant. Different

material behavior can be observed when keeping either bulk

pressure or total volume constant. Similar to the discussion

about the Gibbs dividing surface, we now consider the

temperature derivative of the interface internal energy at

constant interface strain eab and constant system volume V. The

corresponding values, which are calculated as described in

Section 3.1, are reported in Fig. 9. In contrast to a positive slope

at constant bulk stresses (Fig. 8), the temperature derivative at

constant volume is negative below the melting temperature,



Fig. 10. Heat capacity of the entire simulation cell at constant interface strain

eab and constant system volume V, including crystal, melt and interface

contributions.

Fig. 9. Temperature dependence of the interface internal energy at constant

interface strain eab and constant system volume V.
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and is approximately zero above. The different sign of the slope

at low temperatures can be explained as follows. Inspection of

the energy profile with respect to the step function, (e(z)K
estep(zjzdiv)), shows that its value on the crystal side close to the

dividing surface is higher for higher temperatures, while the

melt side is relatively unchanged. This would result in a higher

interface internal energy at higher temperatures, if the position

of the dividing surface was constant. However, we know that

the dividing surface moves closer to the crystal at the higher

temperature. The sensitivity with which this happens decides if

the total interface energy change is positive or negative.

Temperature changes at constant volume result in a much

larger change of interface position than when considering

constant bulk pressures (for reasons given in Section 3.1).

Hence, we conclude that the interface energy change with

respect to temperature must be smaller at constant volume (and

may even go negative as the data in Fig. 9 show) than at

constant bulk pressures. The difference in the temperature

dependence of interface location, vzdiv/vT, at constant volume

and at constant pressure obscures any simple relation between

the temperature derivatives of interfacial energy such as exists

for isochoric and isobaric heat capacities of bulk phases.

In analogy to the heat capacity at constant volume

of bulk materials, one may call either ðveint=vTÞjeab ;pc;pm
or

ðveint=vTÞjeab ;V a ‘heat capacity at constant surface area’ of

the interface. However, we did not choose that nomenclature

on purpose in view of the fact that eint itself is an excess

property. The behavior of that excess property upon changing

temperature does describe the ability to store energy, but it is

strongly interwoven with the thermodynamic behavior of the

two adjoining bulk phases. We now discuss how the

temperature derivative of the interface energy at constant

volume relates to the heat capacity CV of the entire

simulation cell, which is shown in Fig. 10, in accord with

previous results [15,16]. The position of the Gibbs dividing

surface changes with respect to temperature, as discussed

above. In terms of the coarse, discretized three component

model this means that the crystal either grows or shrinks.

When considering the total internal energy of the system,

Et(T), it becomes clear that the temperature derivative,

vEt(T)/vTjV, includes also phase transformation effects. To
illustrate this one can write Et(T) in the form

EtðTÞZA ecðTÞ�zdivðTÞCemðTÞðLK�zdivðTÞÞCeintðTÞ
� �

; (10)

with sample cross section A, internal energy densities of the

crystal and melt, ec and em, respectively, the length of the

sample L, and the position of the Gibbs dividing surface with

respect to the crystal end of the simulation cell, �zdiv. Eq. 10

is equivalent to the previous definition of the interface

energy, Eq. (7). The temperature derivative of that

expression consists of bulk terms, the temperature change

of the interface energy, and a phase change contribution

proportional to v�zdiv=vTZvzdiv=vT

1

A

vEtðTÞ

vT
Z

vecðTÞ

vT
�zdivðTÞC

vemðTÞ

vT
½LK�zdivðTÞ�

C ½ecðTÞKemðTÞ�
v�zdivðTÞ

vT

� �
C

veintðTÞ

vT
; (11)

where all derivatives are taken at constant volume of the

simulation cell, V. Two points are important for interpret-

ation of the total ‘heat capacity’ CVh(vEt/vT)jV as reported

in Fig. 10. First, the quantity vec(T)/vT is the heat capacity of

the crystal phase at constant volume, because the crystal

cannot expand. For the liquid phase, the term vem(T)/vT is

not a heat capacity because neither the pressure of the melt

phase alone nor the mass density of the melt phase alone are

constant (as confirmed by our simulations) when changing

the temperature and holding the total volume of melt plus

interface constant. Second, and more importantly, the

quantity eint(T) according to Eq. (10) for each given

temperature is defined with respect to a temperature-

dependent dividing surface position. Therefore, the tempera-

ture derivatives veint/vT reported in Fig. 9 are taken with

respect to a frame of reference that moves with the Gibbs

dividing surface, and hence they do not include any phase

transformation contributions. The latter are explicitly

accounted for in Eq. (11) by a separate term, which accounts

for a latent heat-type contribution to the ‘apparent’ heat

capacity of the interlamellar region. In our simulations we

observe that the last two terms of Eq. (11) are comparable in

magnitude. While at TZ380 K one finds ½ecðTÞKemðTÞ�_�zdiv
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x0:003 J=m2=K and _eintxK0:0025 J=m2=K with opposite

sign, one has ½ecðTÞKemðTÞ�_�zdivx0:0005 J=m2=K and _eintx
0:0008 J=m2=K with the same sign for TZ437 K. The first

two contributions in Eq. (11) obviously depend on the

absolute thickness of the crystal and of the interlamellar

region, respectively. In the simulations performed here one

finds for the melt contribution _emðLK�zdivÞx0:007 J=m2=K at

TZ380 K and 0.006 J/m2/K at TZ437 K, while the crystal

contribution is vanishingly small. In summary, the tempera-

ture derivative of the total internal energy of the semi-

crystalline system is complicated by the temperature-

dependent location of the Gibbs dividing surface, which

gives rise to a latent heat-type contribution, and in particular

the contribution of the interface internal energy needs to be

accounted for.

3.3. Interface stresses

The interface stresses are calculated according to Eq. (8)

using the spatially resolved stresses profiles across the interface

(see e.g. Fig. 5). The corresponding values for the interface

stresses are reported in Fig. 11 for the bulk crystal and melt

being at atmospheric conditions. The off-diagonal interface

stress pxy is zero within errors, while the diagonal stresses are

clearly non-zero.

Firstly, it is important to note that the interface stresses are

negative, meaning that the stresses try to expand the interface.

As explained in Section 1, this is conceivable because the

chains are congested as they exit the crystal, and (short) folds

also preferentially try to increase the distance between anchor

points. Our results agree in sign and magnitude with the results

reported by Cammarata, Eby and Fisher [1–3], who took into

account experimental data and used a crystal of orthorhombic

symmetry. In that respect, we can say that our results relate to

experimental reports reasonably well, despite the hexagonal

symmetry of the united atom crystal used here. It is important

to note, however, that Cammarata et al. [1–3] studied the {001}

crystal surface, whereas we focus on the {201} surface, which

precludes a direct comparison of the actual values. According

to Rault [9], the interface stresses are high (and anisotropic) in

the presence of short folds. In the absence of short folds, the
Fig. 11. Interface stresses, plotted versus temperature at atmospheric bulk

stresses in the adjoining crystal and melt phases: pxx (&), pyy (,), and pxy

(6).
interface stresses are expected to be low compared to the value

of the surface tension. Our current simulations show that the

average loop consists of hLloopix35:3K0:09!ðT½K�K400Þ

mobile united atoms. Since the loop length distributions are

approximately exponential [13], about two thirds of all chains

are shorter than the average. In that respect, our simulations

correspond to the case of rather short (but not tight1) folds,

which according to Rault is in agreement with the observed

large absolute value of the interface stresses (jpxxj,jpyyjOg)

and their anisotropy, pxxspyy. This anisotropy is a fingerprint

of the broken symmetry of the {201} surface, which has chains

exiting tilted away from the surface normal direction

(z-direction) in the xz-plane. Unequal diagonal components

of the interface stresses were also reported for the {001}

surface by Cammarata, Eby and Fisher [1–3]. In their case, it is

due to the orthorhombic symmetry of the underlying crystal.

Secondly, the fact that the off-diagonal interface stress

vanishes is particularly interesting. By way of the Herring

equation (9) we find that the surface tension does not depend on

shear deformations of the interface, i.e. vg/vexyZ0 at this state

of zero deformation, eabZ0 (a,b2{x,y}). It is only for the off-

diagonal parts of the interface stresses that one can draw

conclusions about the strain dependence of the surface tension,

because for the diagonal parts both contributions in the Herring

equation (9) contribute to the interface stress.

In the Monte Carlo simulation, the stress tensor profiles

sab(z) are calculated not only for the in-plane components (i.e.

for a,b2{x,y}), but also for all other components. In

mechanical equilibrium, one ideally has sxz(z)Zsyz(z)h0,

and szz(z) must be constant. As discussed in Section 1, the

crystal sites are fixed in our simulation in order to prevent

melting of the crystal above the melting temperature. However,

one expects that this introduces artificial stresses in the

interface (but not so in the crystal away from the interface,

because its structure is adjusted accordingly). As a useful

measure for the magnitude of the artificial stresses, we use the

definition given by Eq. (8) also for these out-of plane stresses.

One finds that jpxzj(0:05 J=m2, jpyzj(0:01 J=m2, and

jpzzj(0:05 J=m2. Hence, the stress integrals involving the

z-direction are 20% or less in magnitude compared to pxx, and

even smaller when compared to pyy. Nevertheless, they are

significant, and the reason is that the chains exit the crystal

tilted with respect to the surface normal, and try to stand up

parallel to the surface normal in order to have more space.

However, because they are connected to the crystal, the

persistence along the backbone hinders them considerably

from doing so, in particular because even the top crystal layers

are held in place rigidly. Hence, we believe that the stresses pxz

and pzz are a signature of the tilted chains and of their

persistence along the backbone.

The temperature derivatives of the interface stresses at

constant interface strain and constant system volume are shown

in Fig. 12. They are analogous to the thermal stress coefficient
1 The minimum fold length observed in the simulation is seven united atoms.

Therefore, the surface studied here is clearly distinct from a tight fold surface.



Fig. 12. Temperature dependence of the interface stresses at constant interface

strain eab and constant system volume V : ðvpxx=vTÞeab ;V (&), ðvpyy=vTÞeab ;V
(,), and ðvpxy=vTÞeab ;V (6).
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in bulk thermodynamics, (1/p)(vp(T,V)/vT)jV. We find that the

interface stresses have a negligible temperature dependence

above the melting temperature, within error bars. However, at

low temperatures, a 10 K temperature change results in a stress

change of the order of 5% for both pxx and pyy, when

comparing to the data reported in Fig. 11. Furthermore, one

should note that at low temperatures the temperature

derivatives at constant bulk pressures or at constant system

volume, respectively, have opposite sign, similarly to the effect

for the interface internal energy (cf. Section 3.2). This

highlights again that it is important to keep track of the control

variables. Davis et al. [26] determined experimentally the

change in lattice spacing due to interface stresses as a function

of temperature. According to their results the change in the

lattice parameters a and b have opposite sign and a strong

temperature dependence of the interface stresses is inferred.

Unfortunately, however, their results cannot be compared to

the simulations presented here, because the simulated crystal

has different lattice spacing than the experimental system. It

also has a different crystal symmetry (hexagonal, in contrast to

orthorhombic), and hence also the mechanical behavior is

significantly different. In view of possible future studies of the

polyethylene interface we note that the temperature derivative

of the interface stresses at constant strain are essential

ingredients for the calculation of the thermal expansion

coefficients [27] aijjpZ
P

sijklðvpkl=vTÞje with the fourth

rank stiffness tensor sijklZ(veij/vpkl)jT of the interface.
Fig. 13. Strain dependence of the ratio of bulk mass densities at constant

temperature: (v(rm/rc)/vexx)jT (&) and (v(rm/rc)/veyy)jT (:). For comparison,

the temperature dependence at constant interface strain eab and constant system

volume V is also shown, ðvðrm=rcÞ=vTÞjeab ;V (,).
3.4. Effect of interface strain

The strain dependence of the interface internal energy and

interface stresses is of interest because it reveals additional

information about the system. For example, the strain

derivatives of the interface stresses lead to the fourth rank

stiffness tensor. Since the interface in our case is planar and

oriented in the xy-plane, we only consider deformations in the

xy-plane. The simulation cell consists of two bulk phases and

the interface. A deformation can be imposed in different ways

[3]. Considering a tension along the x-direction, first, equal

stress can be applied in this direction to both crystal and melt.

However, since these two phases have different stiffnesses,
they are deformed to different strains. Consequently, a proper

definition of how to deform the interface becomes cumber-

some. Another method consists in deforming all phases (i.e. the

entire simulation cell) with the same strain. In that case the

planar strain in the interface, eab, is defined unambiguously.

Let us first discuss the change of the Gibbs dividing surface

position when imposing a strain in the x- or y-direction. Consider

a situation as depicted in Fig. 3, with crystal mass density

rcdlimz/KL=2rðzÞ and melt mass density rmdlimz/L=2rðzÞ for

a sufficiently large value of L. Without loss of generality one can

write rðzÞZrcð1Kf ðzÞÞ, with f(z) a function that vanishes in the

crystal and equals 1K(rm/rc) in the melt. The definition of the

position of the Gibbs dividing surface, Eq. (6), can then be

rephrased into

zdiv Z
L

2
K

1

1Krm=rc

ðL=2
KL=2

f ðzÞdz: (12)

The change of zdiv with respect to strain can now be discussed

more easily. One can show that the integral in Eq. (12) is

invariant with respect to strains in the x- or y-direction. In

particular it is positive. One then finds that (vzdiv/veaa)jT and

(v(rm/rc)/veaa)jT (a2{x,y}) are of opposite sign. Since the

crystal has a lower compressibility than the melt, one can argue

that the material between the bulk crystal and the bulk melt also

has a lower compressibility than the melt. If the entire

simulation cell is under strain, the percentage decrease of the

density is higher in the melt than in the crystal, whereby one has

(v(rm/rc)/veaa)jT!0. Hence, the transition region expands upon

expansion of the entire system by virtue of Eq. (12), and the

position of the Gibbs dividing surface is pushed away from the

real crystal surface. This is clearly against the intuition that the

chains that exit the crystal have more space available in the xy-

plane if their anchor points on the crystal surface are moved

apart, and hence they would relax over a shorter distance from

the crystalline conformation to a random conformation. The

data in Fig. 13 show that under strain the melt density indeed

decreases more than the crystal density, and therefore the

distance between the crystal surface and the Gibbs dividing



Fig. 14. Strain dependence of the position of the Gibbs dividing surface at

constant temperature: (vzdiv/vexx)jT (&) and (vzdiv/veyy)jT (:). For comparison,

the temperature dependence at constant interface strain eab and constant system

volume V is also shown, ðvzdiv=vTÞjeab ;V (,).
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surface increases, as shown in Fig. 14. We note that Eq. (12) also

holds for the case of isochoric temperature changes. Therefore,

also for the temperature derivative at constant interface strain

and system volume, the quantities ðvzdiv=vTÞjeab ;V and ðvðrm=rcÞ=

vTÞjeab ;V must be of opposite sign, which is confirmed by the data

shown in Figs. 13 and 14.

The strain derivatives of the position of the Gibbs dividing

surface are rather irregular as a function of temperature in

comparison to the temperature derivatives (see Fig. 14), which

is an indication of the size of the true error on these strain

derivatives. The error bars reported in Fig. 14 are based on

block averages as discussed previously. However, due to the

finite duration of the simulation, the profiles do not get

completely flat in the bulk of the melt. Eq. (12) shows how, e.g.

errors in rm lead to errors in zdim. We envisage the following

origin for such additional errors which strongly influence the

strain derivatives of zdiv, and also of eint and pab. All interface

properties depend strongly on the position zdiv as well as on an

accurate determination of the bulk properties from the profiles.

Imagine for example the energy profile, e(z). First, an error in

the dividing surface position, Dzdiv, results in an error of the

interface internal energy of the form DeintxðemKecÞDzdiv.

Second, errors in the determination of the bulk values of the

profile also enter in eint, namely with a factor of the length of

the integration interval. Similar sources of error also hold for

the interface stresses. Such errors originate mostly from small

irregularities of the final profiles of density, energy and stress.

Our data show that such errors do not obscure the signal of

interest when calculating temperature derivatives. However,

when calculating strain derivatives these errors substantially

affect the derivative. We can rationalize this in the following

way. On the one hand, in the case of the temperature

derivatives, the three temperatures involved in the derivative

calculation are all part of the same calculation, i.e. these three

systems swap configurations from time to time due to the

parallel tempering. Thereby small irregularities in the profiles,

which do not affect the values themselves significantly, are

common to all three systems, and therefore also do not show up

in the differences. In that sense, parallel-tempering serves as a
method for variance reduction. On the other hand, for the strain

derivatives the three configurations involved in the differen-

tiation originate from separate simulations. Therefore, small

irregularities in the profiles are significant when taking

differences.

The strain derivatives of the internal energy and of the

interface stresses do not show a clear trend as a function of

temperature, due to the problems just discussed above.

Nevertheless, we would like to report the ranges of their

values here for completeness: K3 J/m2!pxx;xx!0 J/m2,

0 J/m2!pxx;yy!3 J/m2, K1.5 J/m2!pyy;xx!1.5 J/m2,

0.7 J/m2!pyy;yy!1.6 J/m2, 0 J/m2!eint;xx!0.5 J/m2, and

0.5 J/m2!eint;yy!1.4 J/m2, where pxx;xxZvpxx/vexx, etc. The

error bars on the stress and energy derivatives are approxi-

mately G0.6 and G0.3 J/m2, respectively.

4. Summary and discussion

We have used the method of the Gibbs dividing surface to

define the interface internal energy and the interface stresses of

the {201} fold surface of polyethylene. To our knowledge, it is

the first time that these properties, as well as their temperature

and strain derivatives, have been studied by first principles

from a united-atom model. The values for the diagonal stress

components pxxxK0.27 J/m2 and pyyxK0.4 J/m2 compare

reasonably well with those inferred from experimental data.

We have also discussed how the heat capacity of the entire

semi-crystalline material is influenced by the internal energy of

the interface and by a contribution due to phase transformation.

The expression (10) for the total internal energy can be

generalized to the case of many lamellar crystals, for simplicity

all of cylindrical shape with the same thickness h and radius R.

The total internal energy then contains two bulk contributions

of the crystal and melt phase, plus two interface contributions

for the fold surface and the lateral growth surface, respectively.

Calculation of the ‘apparent’ heat capacity analogous to Eq.

(11) shows the effect of the different interface contributions due

to the lateral and thickness dimensions of the lamellae, which is

relevant for the evaluation of experimental data.

The importance of the bulk phase properties on the interface

properties has been illustrated several times, in particular when

taking temperature and strain derivatives. For example, an

increased pressure leads to a compaction of the interface.

Therefore, a good description of the interface properties must

include the bulk properties of the crystal and melt phase. These

are expressed conveniently in terms of the temperatures Tc and

Tm of the crystal and melt phases, respectively, and the 3!3

strain tensors ec,ab and em,ab, respectively, where both strain

tensors are measured with respect to a reference state with

stress tensor sabZKdabpbulk and pbulkZl atm. In the study

presented here, the crystal and melt temperatures are identical,

and the crystal and melt strain tensors have identical

components in the xy-plane because the entire simulation cell

is deformed with the same strain, as described previously.

Consequently, the thermodynamic state of the interface is

described exclusively in terms of the crystal and melt bulk

properties, namely by the temperature TdTcZTm, and the
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planar strain tensor described by the x- and y-components of

the tensors ec,ab and em,ab. We expect that the commonly

studied coarse-grained three component models using Helm-

holtz free energy expressions of the form Af(T) for the interface

(with A the amount of interface area) could be substantially

improved by considering Af(T,ec,ab,em,ab) instead, in order to

represent the semi-crystalline polyethylene more

appropriately.

The connection between our results for the interface stresses

and lamellar twist shall be discussed briefly. We do indeed

measure interface stresses that are significant in that they are

larger in magnitude than experimental estimates for the surface

tension (with opposite sign). Also, interface stresses are known

to distort the lattice spacing, as discussed in detail above.

Therefore, the magnitude of these stresses can lead to twisting

of the lamella, but only if these stresses were to occur

asymmetrically at the two opposite lamella surfaces [7,8]. By

construction, our simulation is symmetric about the mid-plane

of the simulation, so no asymmetries are observed. Reasons for

the difference between upper and lower fold surface of a

lamella have to be found on different grounds. To break the

symmetry, one most probably needs to look at the growth face

at the same time when measuring the interface stresses.
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